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Computer simulation is used to study the diffusion at the percolation threshold 
on large simple cubic lattices. The exponent k for the rms displacement r with t 
in r ~ t k is found to be smaller than 0.2, while the Alexander-Orbach 4/3 rule 
for the spectral dimension predicts k = 0.201 _+ 0.002. 

KEY W O R D S :  Percolation; diffusion; vector computer; Alexander-Orbach 
rule; and in the labyrinth. 

The usual scaling theory of percolation ~1) relies on two critical exponents 
for the static properties, while the dynamic aspects, such as the conduc- 
tivity of random resistor networks, require a third exponent. Alexander and 
Orbach (2) found empirically that a certain combination of these three 
exponents (see below), called the fracton or spectral dimension, is about 
4/3. Later, high-accuracy Monte Carlo simulations found deviations by 
2-3% for two dimensions, (3) whereas series expansions ~4~ were consistent 
with this AO rule. In high dimensions the so-called epsilon expansion (5) 
disagrees with the AO rule. However, for the physically most relevant 
dimensionality d = 3 most data, with a possible exception of Ref. 6, are con- 
sistent with the AO rule. Here we attempt once again to increase the 
accuracy of the Monte Carlo simulation to test the validity of the AO rule. 
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We use the ant in the labyrinth method, i.e., the diffusion of non- 
interacting particles on the occupied sites at the percolation threshold 
(average over all cluster sizes). For  every lattice we used many walkers and 
averaged over all of them, whether they started on the infinite network or 
on a finite cluster. In this case the asymptotic power law for the rms 
displacement r at time t becomes anomalous at the percolation 
threshold(11,l,7): 

r ~ t  k ( la )  

k = 2(2 + •)/D ( lb)  

0 = (~ - /~)/v (lc) 

D = d -  fl/v ( ld)  

where v is the correlation length exponent, fi the exponent for the volume 
fraction of the infinite network, # the conductivity exponent, and D the 
fractal dimension. The fracton or spectral dimension d or ds of the incipient 
infinite cluster is related to the exponent k via 

k = ds(2 - fi/v)/4D (2) 

Alexander and Orbach (2) conjectured that d s is superuniversal, i.e., it equals 
4/3 in all dimensions d > 1. 

The implementation of this problem on the CDC Cyber 205 at 
Bochum University was described in detail in Ref. 7 and is used here again. 
However, that work was strongly hampered by finite-size effects even 
though lattices of size L �9 L �9 L with L up to 256 were used. In the mean- 
time, the main memory  of the Bochum installation was increased from one- 
half megaword to two megawords of memory,  and thus simulations with 
larger lattice sizes with L up to 456 were possible. Since the diffusion time t 
scales with a rather large power of length (see Ref. 1 or 7 for a review of the 
scaling theory), such a small increase in length scale L shifts the diffusion 
time (where finite-size effects become visible) by a large amount.  

The parameters regarding the statistics and implementation of the 
method are described as follows. We use 20 independent lattices each up to 
2 ** 19 time steps with L =456,  and 1500 independent lattices each up to 
2 . . 1 5  time steps with L = 376 on the expanded Bochum machine. On each 
lattice, 512 ants were allowed to diffuse randomly. For  each step per ant, 
apart  from the initialization, we needed about  0.22 psec for L = 176, 256, 
360, and 376. The time increased to 0.46 psec for L = 4 1 6  and to even 
0.73/tsec for L = 456. Therefore our best data were restricted to L = 376. 
Our  main aim is to find the asymptotic exponent k for r ~ t ~. Figure 1 
shows the results, plotted (7) as effective exponent k e = d ( l o g r ) / d ( l o g  t) 
versus 1/r. The results of Ref. 7 are also shown for comparison. 
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Fig. 1. Effective exponent k versus reciprocal rms distance traveled by the diffusing ants. 
Large circles refer to L-376 with good statistics, dots to L-456  with bad statistics and 
longer runs. The triangles gives the results from Ref. 7 for L = 256. The solid square indicates 
the Alexander-Orbach conjecture k = 0.20. 

We see that  the finite-size effects in Ref. 7 (the upturn  for the largest 
times and distances) gave a misleading impression that  the data  follow a 
straight line in an intermediate time region. Thus,  Ref. 7 concluded 
k = 0.20 _+ 0.01. Our  present data  show some curvature  in the opposite 
direction and we therefore extrapolate by making  the ansatz 
t ~  r'/k(1 + c o n s t - r  ~o). Figure 2 shows the sum of the squared deviations 
from the good  data  points (run with 1500 lattices only) and suggests 

k = 0.175_+ 0.01 (3) 

This estimate is based on fits of data  for large r, excluding small distances r. 
Ou r  data  give the best fit with e) near 0.8. D a t a  in Fig. 1 for the larger 
systems suggest that  finite-size effects are quite small now. Our  k and the 
conductivi ty exponent  /~ are related by #/v=(k-1-2) (1- /~ /2v)=2.8 ,  
where v is the correlat ion length exponent.  This estimate 2.8_+0.3 is 
appreciably higher than previous values near 2.3, as cited in Ref. 7. Our  
correction ansatz m a y  be too simple, which means that higher order  
corrections to scaling in r versus t are needed for a reliable quanti tat ive 
estimate. Right now, the visual impression from Fig. 1 may be quite naive, 
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Fig. 2. Mean square deviation (arbitrary units) of measured effective exponents ke from the 
fit k e = k + const-r-% versus fitted k. Here co varied between 0.5 and 1.1. Data for times 
below 4, 8, and 16 were omitted in the fits symbolized by circles, squares, and triangles. If 
even longer times are omitted, the minima stay near k = 0.175, but become flatter. 

but  may  be the best choice. Direct inspection of  these data  indicates that 
they are very difficult to reconcile with k = 0.20. The Alexander -Orbach  
rule in d dimensions predicts (n 

3~: = (2 - / ~ / v ) / ( a - / ~ / v )  (2) 

where /~ is the critical exponent  for the order  parameter.  F r o m  the series 
expansion (8) result, ~/v = 0.49 _+ 0.04, which gives k = 0.201 _+ 0.002, in con- 
tradiction to the numerical  result (1). We simulated this diffusion process 
at the percolat ion threshold of  0.3116 from Ref. 9. Runs at different concen- 
trations suggest that  the inaccuracy of about  0.0002 in the threshold gives 
an error  in k smaller than our  statistical error. 

It has to be explained why the Cyber  205 C P U  performance drops by 
a factor of three on increasing the system size beyond 376. Total  storage 
requirement for the three-dimensional lattice, using one bit per site, is 
( L + 4 2 ) .  L.L/2** 22 large pages, where a large page is 6553664-bit  
words, the unit of  storage on the Cyber  205. System size L = 3 7 6  
corresponds to the limit of 15 large pages total storage. The physical main 
memory  size available at the Bochum installation is greater than 25 large 
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pages. Therefore, page thrashing to/from the mechanical disk drives cannot 
be the problem. 

The Cyber 205 is a virtual memory machine, that is, the memory 
addresses in user's programs do not point to physical memory locations, 
but rather to virtual ones. A translation mechanism is required to obtain 
physical memory address from virtual memory address. This translation 
mechanism is provided by the page table: for each page allocated to the 
user, the virtual address of the first word within that page is related to a 
physical address in memory. All other words within the same page may 
then be found by adding suitable address offsets. 

If a program is using 25 large pages, it obviously has to have a 25- 
element page table giving the actual memory locations for the 25 pages. 
Since the memory access is performed by the gather instruction exclusively 
for the present algorithms, each and every random sequence of 25 table 
elements is accessed with equal probability. Unfortunately, in Cyber 205 
there is only a set of 16 hardware associative registers to hold the 16 most 
recently used page table elements. If in the course of the gather instruction 
a page outside the last set of 16 pages is accessed, i.e., its page table element 
is required, this element will not be found in the hardware associative 
registers. In this case the vector gather instruction will be interrupted, and 
the hardware associative registers will be reloaded from the central memory 
with new elements of the page table and will again be searched for the 
required element. Because the sequence of page table elements required is 
random, it is obvious that this interruption will occur with a probability 
equal to (total number of pages -16 ) / ( to t a l  number of pages). The total 
number of pages is one larger than the number of data pages because one 
page is needed to hold the program code, local and auxiliary variables, and 
the like. Therefore, up to 15 data pages, the vector gather instruction will 
not be interrupted and will exhibit maximum performance. For  larger and 
larger systems, the above probability will tend to one, that is, the gather 
instruction will be interrupted for each element, leading to much longer 
execution times, as we observed in this simulation (see above). 

In summary, we have shown that the memory of a fast computer 
should be commensurate with its speed. With the bigger memory we could 
obtain better results with about the same computer time than that of Ref. 7. 
We found a deviation from the Alexander-Orbach rule for three- 
dimensional percolation. The corrections to scaling are possibly nonlinear, 
~o < 1, or more than one correction term is needed for these data. It would 
be nice to confirm this result by other techniques, for example, the 
exact enumeration (~~ of occupation probabilities for a given randomly 
constructed lattice. 
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